Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ulrich Flörke* and Dina Petters

Fachbereich Chemie und Chemietechnik, Universität Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.038$
$w R$ factor $=0.096$
Data-to-parameter ratio $=20.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Heptacarbonyl(α-ethoxybenzylidene) di- μ-diethylphosphidodirhenium

The title compound, $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PEt}_{2}\right)_{2}(\mathrm{CO})_{7}\{\mathrm{ax}-\mathrm{C}(\mathrm{Ph}) \mathrm{OEt}\}\right]$ or $\left[\mathrm{Re}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{P}\right)_{2}(\mathrm{CO})_{7}\right]$, contains a carbene ligand with a Z configuration and a non-planar central $\mathrm{Re}_{2} \mathrm{P}_{2}$ ring.

Received 28 January 2002
Accepted 4 February 2002
Online 8 February 2002

Comment

The reaction of $\operatorname{Re}_{2}\left(\mu-\mathrm{P} R_{2}\right)_{2}(\mathrm{CO})_{8}$ with nucleophilic lithium organyls $\mathrm{Li} R^{\prime}$ leads to the salts $\mathrm{Li}\left(\operatorname{Re}_{2}\left(\mu-\mathrm{P} R_{2}\right)_{2}(\mathrm{CO})_{7}\{\right.$ ax$\left.\mathrm{C}\left(R^{\prime}\right) \mathrm{O}\right\}$ which then can be converted to Fischer-type carbene complexes (Haupt et al., 1998a). The title compound, (I), with $R=$ ethyl and $R^{\prime}=$ phenyl, is an axial monocarbene complex with a $\mathrm{Re}_{2} \mathrm{P}_{2}$ ring and slightly distorted octahedral coordination at both Re atoms. The $\mathrm{C}(\mathrm{Ph}) \mathrm{OEt}$ carbene group with a Z configuration is axially attached to Re 2 with a $\mathrm{Re}=\mathrm{C}$ doublebond length of 2.098 (7) A. The orientation of the ReCOEt group is parallel to the $\mathrm{Re} \cdots \mathrm{Re}$ vector with a $\mathrm{Re} \cdots \mathrm{Re}-\mathrm{C} 8-$ O8 torsion angle of $-3.2(6)^{\circ}$. The Re1-P bonds of 2.5154 (17) and 2.5122 (19) \AA for P1 and P2, respectively, are slightly longer than those for $\mathrm{Re} 2-\mathrm{P}$ of 2.5024 (18) and 2.5023 (17) \AA, and reflect the unsymmetrical monosubstitution of this compound. These distances are, on average, slightly shorter than the $\mathrm{Re}-\mathrm{P}$ bonds of the related monoand dicarbene complexes which have μ - PPh_{2}-bridging ligands instead (Haupt et al., 1998a). The average values for the enclosed ring angles are $\mathrm{Re}-\mathrm{P}-\mathrm{Re}=104.35$ (6) ${ }^{\circ}$ and $\mathrm{P}-$ $\mathrm{Re}-\mathrm{P}=75.43(6)^{\circ}$. The $\mathrm{Re}_{2} \mathrm{P}_{2}$ ring is folded, with an $\mathrm{ReP}_{2} /$ P_{2} Re dihedral angle of $6.2(1)^{\circ}$. This is a well known effect due to an intramolecular balance of unsymmetrical or sterically unfavourable substituted carbonyl complexes of this type (Haupt et al., 1998a,b; Flörke \& Petters, 2001). The C-Re-$\mathrm{Re}-\mathrm{C}$ torsion angles range from 0.2 (4) to 8.8 (4) ${ }^{\circ}$ (absolute values), in accordance with the ecliptic carbonyl-ligand arrangements.

(I)

Experimental

The title compound was obtained by reaction of $\mathrm{Li}\left(\operatorname{Re}_{2}(\mu-\right.$ $\left.\left.\mathrm{PEt}_{2}\right)_{2}(\mathrm{CO})_{7}[\mathrm{C}(\mathrm{Ph}) \mathrm{O})\right\}$ with $\mathrm{OEt}_{3} \mathrm{BF}_{4}$ in CHCl_{3} solution at room temperature. The synthesis of the precursor Li salt has been described earlier (Haupt et al., 1998a).

Crystal data

$\left[\mathrm{Re}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{P}\right)_{2}(\mathrm{CO})_{7}\right]$
$M_{r}=880.82$
Triclinic, $P \overline{1}$
$a=8.425$ (2) \AA
$b=10.504$ (1) \AA
$c=17.674$ (4) \AA
$\alpha=73.04(1)^{\circ}$
$\beta=78.82(1)^{\circ}$
$\gamma=88.59(1)^{\circ}$
$V=1466.8(5) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.994 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 29 \\
& \quad \text { reflections } \\
& \theta=7.8-23.7^{\circ} \\
& \mu=8.40 \mathrm{~mm}^{-1} \\
& T=200(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.38 \times 0.15 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker P4 diffractometer

$$
\omega \text { scans }
$$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.023 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-10 \rightarrow 1 \\
& k=-13 \rightarrow 13 \\
& l=-22 \rightarrow 22 \\
& 3 \text { standard reflections } \\
& \text { every } 397 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.083, T_{\max }=0.608$
8026 measured reflections
6665 independent reflections
5086 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=0.98$
6665 reflections
330 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0575 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.94 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.82 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\mathrm{A}},{ }^{\circ}\right)$.

Re1-P2	$2.5122(19)$	$\mathrm{Re} 2-\mathrm{P} 1$	$2.5024(18)$
$\mathrm{Re} 1-\mathrm{P} 1$	$2.5154(17)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.300(8)$
$\mathrm{Re} 2-\mathrm{C} 8$	$2.098(7)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.517(9)$
$\mathrm{Re} 2-\mathrm{P} 2$	$2.5023(17)$	$\mathrm{O} 8-\mathrm{C} 9$	$1.495(9)$
$\mathrm{P} 2-\mathrm{Re} 1-\mathrm{P} 1$	$75.23(5)$	$\mathrm{Re} 2-\mathrm{P} 2-\mathrm{Re} 1$	$104.40(6)$
$\mathrm{P} 2-\mathrm{Re} 2-\mathrm{P} 1$	$75.63(6)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{Re} 2$	$123.6(5)$
$\mathrm{Re} 2-\mathrm{P} 1-\mathrm{Re} 1$	$104.30(6)$		

Figure 1
The molecular structure of (I) with H atoms omitted. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were placed at calculated positions, riding on the attached C atoms, with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ [$1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl groups].

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (1996). XSCANS. Version 2.21. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Flörke, U. \& Petters, D. (2001). Acta Cryst. E57, m237-m238.
Haupt, H.-J., Petters, D. \& Flörke, U. (1998a). J. Organomet. Chem. 558, 81-89.
Haupt, H.-J., Petters, D. \& Flörke, U. (1998b). J. Organomet. Chem. 553, 497501.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

